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Directed percolation: mean field theory and series 
expansions for some two-dimensional lattices 

K De'Bellt§ and J W Essamf 
f Department of Physics, University of Edinburgh, Edinburgh, Scotland 
$ Mathematics Department, Westfield College, University of London, Hampstead, London 
NW3 7ST, England 

Received 12 July 1982 

Abstract. The shape of percolation clusters in the directed percolation problem is studied 
within mean field theory. 

Low-density series expansions are obtained for bond and site problems on the square 
and triangular lattices. These are used to test a scaling formula for the pair connectedness 
which involves two lengths (11(p) and ( - ( p ) .  Determination of the exponents vll and U ,  

for these lengths shows that all four problems are in the same universality class and the 
values support the hyperscaling relation 

p = ~ ( D u ,  + ", I -  y ) .  

An independent argument is given for this relation 

1. Introduction 

Recent interest in directed percolation theory (Broadbent and Hammersley 1957, 
Mauldon 1961) stems from its connection with a variety of physical problems: for 
example Reggeon field theory (Cardy and Sugar 1980), random resistor-diode 
networks (Redner and Brown 1981), chemical reactions (Schogl 1972, Grassberger 
and de la Torre 1979), epidemic models (Grassberger 1982) and galactic evolution 
(Schulman 1982). 

The model is in a different universality class from isotropic percolation (Blease 
1977a, b, c) and has two connectedness lengths 511 and t1 (Kinzel and Yeomans 1981) 
parallel and perpendicular to the direction in which percolation first occurs. 

The mean field theory of De'Bell and Essam (1981, hereafter DBE) is extended 
to directed problems in § 2 and the shape of the clusters is studied above and below 
pc.  The two connectedness lengths are found to have exponents V I I  = 1 and v l  = 5. 
These results also follow from the work of Obukhov (1980), who showed that mean 
field exponents are valid above the critical dimension d, = 5. Our results hold for any 
model whose direct connections satisfy (2.11). Essentially, the capture region of a 
given point should have a single symmetry axis and the probability of capture should 
be higher in one of the two axial directions. One could imagine more exotic systems 
with more than one axis and other symmetries, but here we consider only the simplest 
case in detail. Redner (1982a) has recently discussed a mean field theory for directed 
percolation which is based on the relation between percolation and models which 
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386 K De 'Bell and J W Essam 

have a Hamiltonian; the DBE theory is independent of such a connection. Harms and 
Strayley (1982) have also obtained the mean field values of vi1 and v, by embedding 
a directed Cayley tree in an infinite-dimensional cubic lattice. 

Cardy and Sugar (1980) have given the scaling form for the pair connectedness 
C(x, t )  based on the equivalence with Reggeon field theory. Their relation is written 
in terms of the percolation functions 611, and the mean size S in equation (3.1). The 
prefactors are chosen so that integration of C(x, t )  over the whole space correctly 
gives the mean size. However, integration along the special axis x = 0 only, gives the 
expected number So of particles per unit area on this axis which are connected to the 
origin. The scaling form (3.1) implies that S/So diverges with exponent Dv, (§  3), 
where D is the number of transverse directions and we estimate this exponent directly 
as a test of the scaling form. 

The argument of Dunn et a1 (1975a) which produces the hyperscaling relation 
p = $(Dv - y )  for isotropic percolation has no simple extension to the directed case. 
In § 3 we present a new argument which also yields the generalised relation p = 
@v, + vi , -y)  for directed percolation (see also Cardy and Sugar (1980) and Redner 
(1982a)). This relation determines dc in a simple way by insertion of the mean field 
exponents (Redner 1982a). Our numerical estimates of y, v, and vll in two dimensions 
are in excellent agreement with hyperscaling when compared with the series estimate 
of p (Blease 1 9 7 7 ~ ) .  If hyperscaling is valid, then the scaling form (3.1) may be written 

where p is the exponent for the vanishing of the percolation probability. 
The remainder of the paper is concerned with the derivation (§ 4) and analysis 

(§ 5 )  of low-density series expansions for bond and site problems on the square and 
triangular lattices. The exponents resulting from this analysis are summarised in table 
5 .  The main idea in § 4 is that two methods previously used by Blease (1977a, b) can 
be combined in a complementary manner to produce longer series. 

2. A generalised percolation model and mean field theory 

Consider the general model of DBE in which two types of particle, 'ordinary' and 
'impurity', were distributed through a volume fl with density p ( r )  and v ( r )  respectively. 
The model includes directed percolation theory as, for example, the case when the 
capture region w ( r )  for a particle at r has a centre of mass which is not at r.  If for 
all r the centre of mass of o ( r )  is displaced by R from r, then, as p is increased, 
percolation will first occur in the direction of R. Equations (3.1)-(3.6) of DBE, which 
give the percolation probability and mean size of clusters in the mean field approxima- 
tion, are still valid for directed percolation. However, the subsequent equations of 
DBE § 3, which refer to the pair connectedness, break down when there is a preferred 
direction. In this section we extend the mean field theory to the angular dependence 
of the pair connectedness. 

Before calculating the pair connectedness, we note that the model of DBE may be 
extended to include randomness in the particle connections as well as in the particle 
distribution. Replacement of (2.2)-(2.4) and (2.15) by the following definitions allows 
the results of DBE to be used for the generalised model. 

Let y ( r , r o )  be the (given) probability that a particle placed at r will be directly 
connected to a particle at ro. In DBE y ( r ,  ro) was equal to one for r in the capture 
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region of ro  but zero otherwise. For a given configuration of the particles in which 
there are particles at r and ro let yc(r, ro) be the probability that there is a path from 
ro to r (i.e. a direct or indirect connection from ro to r ) .  

The percolation probability may be defined by 

P ( r )  = 1 -(Ec(r))F (2.1) 

where the average over configurations of ordinary particles gives zero weight to 
configurations in which the cluster connected to a particle at r is of unbounded extent. 
As before, 

) E&) = exp( - / v(r’)yc(r’, r )  dr’  

is the probability that in a given configuration of ordinary particles the cluster at r 
will be free from impurity particles. Finally, the pair connectedness C(r Ira) and mean 
size S ( r )  are defined by 

(2.4) 

The integral is the expected number of ordinary particles in the cluster at r giving 
zero weight to unbounded or impure clusters, and n ( r )  is the expected number of 
ordinary particles directly connected to a particle at r :  

n ( r )  = p(r‘)y(r’ ,  r )  dr’. (2.5) i 
The definition of S(r) agrees with that of DBE when p is constant, provided that we 
define t’ (r) by 

u ( r )  = y(r’, r )  dr‘  I 
In the case of directed percolation, we shall also be interested in the expected 

number of ordinary particles per unit perpendicular area which are connected to the 
origin and lie near the straight line through r, having direction of the unit vector e. 
With the same normalisation as S( r ) ,  this is given by 

The mean field equation for the pair connectedness is given by the generalisation 
of equation (2.14) of DBE, that is 

C(r1r0) = (1 - - P ( ~ O ) ) ( Y ( ~ ,  ro)+ 1 C(rlr’)p(r’)y(r’ ,  ro) dr‘). (2.8) 

Assuming p to be constant and that y(r’, ro) = y(r ‘ -  ro), P will be constant and C will 
depend only on r - ro. Taking Fourier transforms 

u ( 1 - P )  
K ’ ( k ) - n ( l - P )  

c ( k )  = (2.9) 
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where 

with O(0) = 1. Now assume O(k) to be of the form 

b 2 - a 2  
b>a>O 

b2  - a 2  + ( k 2  +2ik a ) 4 ( k )  
e ( & )  = 

(2.10) 

(2.11) 

where (k) - 1 + O(k2)  for k + 0 and C#J (k) + CO sufficiently fast to ensure the conver- 
gence of subsequent integrals as k + 00. We take this to be the simplest form of O(k) 
having the required symmetry for directed percolation. (However, it may readily be 
shown that if, for example, the capture region for point r is an orientated d-dimensional 
cube of side 1 with centre displaced by a from r parallel to some face of the cube, 
then O(k)  may be approximated by (2.1 1) for small Ik 1 and la I << i.) Assuming (2.1 l), 
then for r + 00 

y ( r )  - e - ( b r + a . r )  /,.(d-1)/2 (2.12) 

which decays exponentially in all directions but the decay rate is least in the direction 
of a. For this model 

v (1 - P ) ( b 2  - a 2, 
e ( k )  = 

K ’ - u ’ +  ( k 2 + 2 i k  ’ a)C#J(k) 
(2.13) 

(2.14) 

where 

(2.15) 

The shape of a typical cluster is determined primarily by the exponent K r  - a  r ,  and 
curves along which this has value 1 are plotted for a = 1 and various values of K in 
figure 1. 

Now P = 0 for n < 1 and p = 2(n - 1) for n + 1+ (DBE 3.2). Hence from (2.14) we 
see that, as n + nc = 1 from either side, K + a and the decay length becomes infinite 
in the direction of a but is still finite in any other direction. Near nc 

(2.16) 

K 2 =a2+(b2-a2) (1 -n+nP) .  

2 
K - a 2  -- 2u(K - U )  2 (b2-  a2 ) (n  - 11 

37, 

-1 0 & a  10 6 16 4 2 2  2 

Figure 1. Curves of unit decay length in the mean field approximation for various values 
of K ~ :  A, K ~ =  1,l; B, 1.2; CC, 1.3; D, 1.4; E, 1.5. 
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so that the finite clusters at n > n ,  are similar to those for n < n ,  at the same distance 
from n,. If we define 611 to be the decay length in the forward direction and l1 to be 
the maximum value of x for the curves in figure 1 then it can be shown that 

(2.17) 

(2.18) 

For fixed n # n ,  and typical points in a large cluster ( x  << t )  the pair connectedness 
may be approximated by the form 

e e -[(x/€,)2/41/~l /€l l )  

C(r )  - r ( d - l ) / 2  (2.19) 

and for k + O  

~ ( k ) - ~ [ 1 - i k l l 5 l i - ( k i l 5 i l ) ~ - ( k ~ 5 ~ ) ~ + .  . .I. (2.20) 

P 11 - Slll P 2 t  = 2s5; P2x = 2s5:. (2.21) 

The asymptotic form of the moments of C ( r )  is therefore given by 

The directional mean size in the preferred direction defined by (2.7) with e = a / u  
is given by 

dk,f?(k,, kli = 0). 
1 so=----- 

u ( l  - P )  (2# 
(2.22) 

The integral is proportional to the generating function for random walks in D = d - 1 
dimensions which return to the origin. 

(2.23) 

- (K 2 - U y - 1 -  In -I/-'" (2.24) 

where yo = 1 - D / 2  and for D > 2 the expression refers to the singular part of So. 
When D = 2, So diverges logarithmically. 

So far we have considered only the pair connectedness between points given that 
the connecting path belongs to a cluster which is finite in the preferred direction. For 
n > n ,  the clusters which are of infinite extent in the preferred direction are still finite 
in direction whose angular deviation from the preferred direction is # >4, (n ) .  To 
see this we must drop the factor 1 -P in (2.8), which means setting P = 0 in (2.9). 
For n > n ,  = 1, we now have K < U  and #= is obtained by setting the exponent to zero 
in (2.15); thus 

cos 4 J n )  = K / a .  (2.25) 
We show in figure 2 the curves along which the exponent KT - U  r has the value 

(Y for a range of a with U = 1 and K~ = 0.9. The curves are asymptotically parallel to 
the a = 0 line, which is at an angle #, = tan-'(+). For n + n,' 

(2.26) 
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2 

Figure 2. The curves K r  - a  r = a for a = 1 and K~ = 0.9 for various values of C Y :  A, 
a = O . O ;  B, 0.25; C, 0.5; D, 0.75; E, 1.0. 

in agreement with the general result of Harms and Strayley (1982) which was based 
on the superlattice picture of the infinite cluster (Skal and Shklovskii 1975) and 
confirmed for a Cayley tree model. 

3. Scaling and hyperscaling 

Cardy and Sugar (1980) have established an equivalence between directed percolation 
and Reggeon field theory which enabled them to take over a scaling relation which 
was obtained for the field theory by Abarbanel et a1 (1976). The relation may be 
written in the form 

C(X, t)  = uSS;D5n'4(x/51, t / h )  (3.1) 

where U is the constant 'volume' of the capture region and the factors S, t1 and (11 
are functions of the assumed uniform density p and are singular at pc:  

(3.2) 

The prefactors are chosen for consistency with the mean size S being related to the 
integral of C by (2.4). 

The series expansions in the next section will be used to test this relation by 
estimating vl in two different ways. Firstly we use 

s - IP - p J Y ,  51,e - IP -PcI-y ' ." .  

and secondly the mean size in the preferred direction, which, from (2.7), is 

(3.3) 

(3.4) 

This formula implies the exponent relation 

YO = Y -Dvi (3.5) 

where yo describes the divergence of So.  This relation is satisfied for all D by the 
mean field exponents (equation (2.24)). 
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Another field theory relation which was exhibited by Cardy and Sugar 
for the percolation probability exponent and may be written 

p = i(Dvl + V,, - y ) .  

1980) is 

(3.6) 

The series expansions of the next section will determine all three exponen.; on the 
right of the equation, and the relation will be tested by comparison with independent 
estimates of p. Equation (3.6) is a hyperscaling relation and is satisfied only by mean 
field exponents at D = D, = 4, which gives d, = 5. Obukhov (1980) has shown that 
the mean field exponents are valid above this critical dimension, and (3.6) is only 
expected to be valid for d 6 5. 

Dunn et a1 (1975a) obtained the above relation in the undirected case (v, = vll) 
using only percolation concepts and in particular the mean number of clusters. The 
latter does not extend easily to directed percolation, since clusters are only defined 
relative to a given source, and sources which are not in each other’s cluster may still 
have particles in common. 

We now obtain (3.6) for ordinary percolation by an argument which avoids the 
mean number of clusters and extends immediately to the directed problem. Consider 
the superlattice picture of the infinite cluster discussed by Skal and Shklovskii (1975) 
and used by Harms and Strayley (1982) and Redner (1982b) in the context of directed 
percolation. This is an irregular lattice-like structure with nodes separated by a 
distance of the order of the connectedness length t(p). Coexisting with the infinite 
cluster are finite clusters of a similar linear dimension e @ ) ,  and size distribution which 
is scaled by a parameter Y ( p )  - / p  - - P = \ - ~ .  If we suppose that the nodes of the 
superlattice contain of order Y(p) particles so that they have a size comparable with 
typical finite clusters in the neighbourhood, then the probability that a particle belongs 
to an infinite cluster P(p)  is estimated by 

This result is obtained by counting the number of particles per unit volume which 
belong to the infinite cluster. Recalling the scaling formula (Dunn et a1 1975a) 

QJ, h )  - P ( p ) f ( h Y ( p ) )  (3.9) 
where the impurity density v ( r )  is assumed constant and h = v ( r ) v ,  then, since S ( p )  

A = p + y .  (3.10) 

cc aP/ah, 

Combining this with (3.8) gives 

/3 =i(dv - y ) .  (3.11) 
The extension to directed percolation is now clear. Noting that the superlattice 

cells will have dimension of order 511 in the preferred direction and & in the D 
perpendicular directions, we obtain 

p(P 1 - Y(P )/(51l(P )5% 1) 
and 

Since (3.10) is still valid, the result (3.6) follows. 

p = Dv, + - A. 

(3.12) 

(3.13) 
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4. Low-density series expansions for two-dimensional lattice models 

The basic method used has been described in detail by Blease (1977a), who derived 
series expansions for the mean size and second spherical moment of various two- 
dimensional bond problems. The method is limited by the amount of computer 
memory available, and here we show how the data may be considerably extended 
without using further storage space. Both bond and site problems have been considered 
on the directed square and triangular lattices studied by Blease (1977a, figures l ( a )  
and ( b ) ) .  

The extension is based on classifying the lattice sites according to the least number 
of steps U required to reach a site from a given origin (observing the direction of the 
bonds). Let N ,  be the set of sites which are U steps away. We shall use the variable 
p which is the probability of an open bond or the probability of an occupied site. To 
make a connection with the particle description of the previous sections, write p = 
1 -e-”, which is the probability that a site (or bond) is occupied by at least one particle 
(Coniglio and Essam 1977). Integrals over 0 are replaced by sums over lattice sites. 
Thus the moments of the pair connectedness may be written 

where x, and t, are the coordinates of site i relative to axes perpendicular to and along 
the preferred direction (i.e. the (1, 1) direction for the lattices considered). We consider 
only the mean size S ( p )  = p F 1 p O O ( p )  and the second moments p y ) ( p )  = p d p )  and 
py) = poz(p) .  p11(p)  = 0 by symmetry. (For p < p c ,  PF= 1 for the bond problem and 
p F  = p for the site problem.) To obtain low-density series expansions through order 
N, only terms with u s N  need be calculated. The method described by Blease 
(1977a), which is essentially a transfer matrix method, has been used for u s N l ,  
where N I  is as large as possible consistent with the computer memory available. For 
N I  < U  s N,  we have used a weak sub-graph expansion (Dunn ef a1 1977b). The 
application of this method to directed lattices has been described by Blease (1977b) 
in the case of the mean size, and here we extend his description to the second moments. 

In principle, the method works on any lattice, but the implementation is most 
straightforward on the square, hypercubic and body-centred cubic lattices. From here 
on we restrict the discussion to these lattices. The directed sub-graphs which have 
non-zero weight are unions of directed paths between the two ‘root’ vertices (Essam 
1980) and, in calculating C,(p), one root is mapped to the origin and the second to 
site i. All paths between the roots must be of the same length and for a given site 
i E N, the paths must all have U steps. Also the coordinate f ,  is proportional to U.  

The triangular lattice has neither of these properties: for this lattice we have used 
only the transfer matrix method for the bond problem, and the perimeter method 
(Domb 1959) together with an animal-counting program for the site problem. 

Before calculating the sub-graph weights we must consider the construction of a 
list of graphs required for N I  < U  S N .  We note that, for i EN,,  C , ( p )  is a polynomial 
in p, the lowest power of p being U. Also, a graph with r edges ( r + 1  vertices) 
contributes only to the coefficient of pr for the bond (site) problem, thus U s r s N. 
Now the shortest path through a required graph must be of length U, hence, for r = U, 

only chains of r edges need be considered. For the bond problem this is also true 
when r = U  + 1, but for the site problem a chain with an embedded square must also 
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be considered (figure 4(a )  of Blease (1977b)). This graph enters at r = U  + 2 for the 
bond problem. In general, if r = U + U ,  the graphs to be considered have as many as 
U edges (vertices) which may be deleted without disconnecting the roots. The graphs 
required for the bond and site problems on the hypercubic lattices are listed in table 
1 for different values of U. The letters refer to figure 4(a )  of Blease (1977b) except 
for the graph 

which is missing from his list. 

Table 1. Graphs which enter the expansion when the number of edges r = U  + U .  The 
letters refer to figure 4(a i  of Blease 11977b). 

U Bond problem Site problem 

To obtain the contribution of the graphs in table 1 to the mean size it is only 
necessary to count the total number of embeddings on the lattice and weight this with 
(-l)’-’, where j is the number of independent paths which constitute the graph 
(Arrowsmith and Essam 1977). Formulae for the number of embeddings were given 
by Blease (1977b, table 4). 

In calculating the second moments, an additional factor must be included. For 
the case of py) this is just cr2. The weight for p?’ is not so simple and depends on 
the lattice and structure of the graph. For the linear chain it is the mean square 
end-to-end distance for a random walk on the D-dimensional lattice obtained by 
projecting the d-dimensional lattice onto a plane perpendicular to the t axis. This is 
proportional to the number of steps r. The general graph which contributes to the 
expansion of the pair connectedness is a chain of non-nodal one-irreducible, two- 
rooted graphs. Each of these graphs must also have the property that all paths between 
the roots have the same number of steps. We now consider the weight to be used in 
calculating p F). 

Suppose that G I , .  . . , GM is a collection of two-rooted, non-nodal graphs of the 
above type, each with a distinguished initial and terminal root. Let G be the two-rooted 
graph obtained by attaching the initial vertex of to the terminal vertex of 
GI, i = 1, . . . , M - 1, and let R, = (xl, t , )  be the position vector of the terminal root of 
GI relative to its initial vertex in a given embedding of G on the lattice. The contribution 
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of G to I*:"' is (-l)'-'p'W:"'(G) where 
M 

W:"'(G) = 1 . . . C ( X I  +.  . .+xM)* W,(R,). 
R I  RM i = 1  

(4.2) 

Here Wl(Ri) is the number of embeddings of GI  with its initial and terminal roots at 
relative positions RI.  The product is the number of embeddings of G with its roots 
and nodal points in fixed positions, which factorises since vertices in different GI  may 
be embedded independently. The sum may be rearranged as 

(4.3) 

where W(G)  is the total number of embeddings of G and ( ) represents the average 
over embeddings. Then 

with 

W(Gi) = 1 Wi(Ri). 
R, 

For j # k the average may be written as (xi) e (xk) where 

(4.5) 

On the lattices considered, (x,) = 0 and hence 
M 

W:"'(G)= W(G)  1 (xf). (4.7) 
1 = 1  

The W(G) are essentially given by the formulae of Blease (1977b, table 3), except 
that he has collected together all possible orderings and directing of the GI. In table 
2 we list the factor C E l  (x?)  for the square lattice in units of (x?) for a single edge. 
For a chain of r single edges the sum is equal to r in these units. 

The contribution of G to the directed mean size S o ( p )  in the preferred direction 
is obtained by replacing W(G)  by Wo(G), the number of embeddings in which the 
second root is at a point on the t axis. This may be written 

where the vectors R I , .  . . , R M 8  are the ones corresponding to the GI  having more 
than one edge, r' is the total number of edges in these Gi, and p , ( x )  is the number 
of n -step random walks on the D-dimensional projected lattice which end at the point 
x ( p o ( 0 )  = 1). For the square lattice these are walks on a linear chain, and for 1x1 s n 

n 
n - x  even 

n -x odd. 
p , ( x )  = - x J  (4.9) 

The factors IIZ, w , ( R , )  are given in table 2 for the square lattice. 
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Table 2. Weights for calculating p y ' ( p )  and S O ( p ]  for bond and site problems on the 
square lattice. r is the number of edges; x = x + x 2  + . . , + xm,. 

,=1  , = 1  

x = o  1 2 3 4 

r - 4  
r -5  
r - 6  
r - 8  
r - 3215 
r - 7  
r -5 .517  
r -9  
r - 6  
r - 1 0  
r - 1 0  
r -10 
r-4215 
r - 2 8 1 3  
r -12  
r -10  
r-5215 
r - 1 0  
r - 8  

1 
1 
1 

1 
3 1 
2 1 

6 1 
1 

1 
2 
2 
2 

4 1 
20 10 

1 
2 1 
3 1 

1 
3 1 

1 

5. Series analysis 

The low-density series we have used are tabulated in the Appendix. Some of the 
series for the bond problem have been published previously (Blease 1976, 1977a, 
Essam and De'Bell 1981) but we include them for completeness. 

5.1. Critical probability and mean size exponent 

All our exponent estimates are based on standard Pad6 pole-residue analysis of the 
Dlog series. The Pad6 tables for the mean size series are shown in table 3.  As usual 
in this type of analysis there is a strong correlation between estimates of the critical 
points and exponents. The scatter of p c  estimates is least in the case of the square 
lattice bond problem. Blease (1977a) found that more consistent estimates of p c  for 
this problem could be obtained by applying the ratio method to the Euler-transformed 
series with p = z / ( l  -2). Our four extra terms enable us to extend his table 2 ( a )  and 
the results are shown in table 4. The estimates of zc  remain remarkably steady and 
we confirm his rather conservative result 

pdsquare bond) = 0.6446 i 0.0002. 

This is also in good agreement with the finite size scaling values of Kinzel and Yeomans 
(1981). 
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Table 4. Ratio method applied to the mean size series for the square lattice with 
p = z / ( l - z )  and an n-shift of 4.16. 

n 2, Y n L C  Y 

10 0.392 001 
11 0.391 955 
12 0.391 960 
13 0.391 963 
14 0.391 958 
15 0.391 954 
16 0.391 955 
17 0.391 955 

2.2711 
2.2692 
2.2694 
2.2696 
2.2693 
2.2691 
2.2692 
2.2692 

18 0.391 951 
19 0.391 952 
20 0.391 951 
21 0.391 954 
22 0.391 954 
23 0.391 949 
24 0.391 957 
25 0.391 952 

2.2690 
2.2690 
2.2689 
2.2691 
2.2691 
2.2688 
2.2694 
2.2690 

If p c  is given the value 0.6446, the pole-residue plot of the Pad6 data yields the 
biased estimate 

y(square bond) = 2.269 f 0.002 + 80Apc 

which is also consistent with table 4. The remaining Pade tables are consistent with 
exponent universality, and using y = 2.269 we obtain the biased estimates of the other 
critical points: 

pc (square site) = 0.7055 i 0.0001 + 0.02Ay 

p c  (triangular bond) = 0.4777 f 0,0001 + 0.02Ay 

p c  (triangular site) = 0.5949* 0.0004 + 0.02SAy. 

5.2. Parallel connectedness length 

The values of pc given in (§ 5.1) have been used to estimate v11 from the pole-residue 
plots. Two series were used for each problem: p : f ’ ( p ) / S ( p )  and g ! ’ ( p ) / S ( p ) ,  where 
p i ’  = py’ + p:”’ is the second spherical moment previously analysed by Blease (1977a) 
for the bond problem. Since pL:*) diverges less strongly than p:f’,  both functions are 
expected to have critical exponent 2~11. If both sets of data are superimposed on a 
pole-residue plot, a single well defined curve is found for both square lattice problems. 
As an example we show the pole-residue plot for the square lattice site problem in 
figure 3. For the triangular lattice the curves run roughly parallel with a vertical 
separation of 0.01 in the region of the biased p c  estimates, and for the site problem 
the majority of estimates lie below this region. The results are summarised in table 
5. The value 

V I /  (square bond) = 1.730 3t 0.005 + SOAp, 

is our best estimate of v , ~ ,  and bearing in mind that the quoted errors are only a 
measure of the scatter on the pole-residue plots, the somewhat lower values obtained 
from the other series are not inconsistent with this result. In the case of the bond 
problems our analysis is an extension of that of Blease (1977a) and our findings are 
not significantly different. Similar values have also been obtained by Kinzel and 
Yeomans (1981). 
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I I 1 
0 69 0 70 0 7' 

P 

Figure 3. Pole-residue plots for vi, from p*:"/S 10) and p;"/S (0): directed site problem, 
square lattice. 

Table 5.  Summary of critical probabilities and exponents for the square and triangular lattices. 

Square Triangular 

Bond Site Bond Site 

P c  0.6446* 0.0002 

Y 2.269 * 0.002 
+ 80hp, 

VI1 1.730*0.005 
+ 50Ap, 

v, 1.095 f 0.002 
+ 30hp, 

" I1 1.088i0 .002  
+ 25Ap, 

0.7055 +0.0001 
+0.02A.v 

2.269 (assumed) 

1.715*0.01 
+ 25Ap, 

1.095 * 0.002 
+25Ap, 

1.095 * 0.005 
+ 15Ap, 

0.4777 *0.0001 
t0.024-y 

2.269 (assumed) 

1.71 *0.02 
+ 25hp, 

1.095 * 0.005 
+ 20hp, 

1.074 i 0.005 
+ 20hp, 

0.5949+ 0.0004 
+ 0.025A-y 

2.269 (assumed) 

1.70 *0.01 
+35hp, 

1 .084i0 .005  
+ 204p, 

1.094 * 0.01 
lOhp, 

5.3. Perpendicular connectedness length 

In 0 3 we saw that if the scaling form (3.1) is valid, the ratio S ( p ) / S o ( p )  should diverge 
with index Dv,. To test this result we let 

S ( P ) l S o ( P )  - ( P c - P ) - D y o  

and test the scaling law by comparing v o  with the value of v I  obtained from the  
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expansion of w : X ) ( p ) / S ( p )  which diverges with index 2v,. The pole-residue plots for 
all four problems are shown in figure 4, and exponent estimates are given in table 4. 

The values of v I  are in excellent agreement except for the triangular site problem. 
In this case the result depends heavily on the [6/4] approximant which gives a rather 
low value and should not be taken too seriously. 

1 I 0 7 0 5 5 ,  
( a  1 

0 6 L i 6  

0 6 4 6  0 7 0 2  0 704 0 706  0 7 0 8  
0 2  i / -  ‘ 1 2 ’ l i 1 ,  
0 6 4 2  C 6 6 4  

1 3 -  

1 2 -  

Figure 4. Pole-residue plots for v L  from @:’/S (0) and S/So (3): ( a )  square lattice, 
bond problem; ( b )  square lattice, site problem; (c1 triangular lattice, bond problem; ( d )  
triangular lattice, site problem. 
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The bond problem curves for v o  are well defined but run parallel to those for vL 
in the assumed critical region rather than intersecting as we had hoped. This does 
not necessarily mean that the two exponents are different, since a similar effect was 
noticed in 9 5.2 where the exponents were known to be the same. Similar effects have 
also appeared in other Pad6 analyses of percolation series (see e.g. Blease et a1 1978). 
The discrepancy of 0.02 in the worst case is relatively small. 

In the case of the site problem the estimates of v o  are in good agreement with 
those of vL, although the assignment of errors is difficult since most of the points lie 
below the biased estimates of p c .  

6. Summary and discussion 

It is clear from our results that all four models lie in the same universality class. The 
relatively small discrepancy between v l  and v o  is not unprecedented and does not 
represent a significant violation of the scaling law (3.1). 

Our results enable the right-hand side of (3.6) to be evaluated, and comparison 
with the result p = 0.28*0.02 (Blease 1977c) will be a test of hyperscaling. For the 
square lattice bond problem 

confirming (3.6). Notice that the systematic errors arising from Ap, cancel, and the 
contribution from the variation with p ,  is less than 5Apc. For the other problems 
considered the results are consistent with (3.6) but less precise. 

Lastly, we note that there is a slight discrepancy between the p l 1  term of the mean 
size and second spherical moment series presented here for the triangular lattice bond 
problem, and the results of Blease (1977a). In an attempt to check for word length 
and memory size errors, we have run our program on the University CDC 7600 as 
well as on the Prime 750 College computer on which most of the work was carried 
out; however, the discrepancy remains. In adding three more terms we have been 
able to apply some consistency checks to the p" coefficient. 

Appendix. Low-density series expansions for the directed square and triangular 
lattices 

Tabulated below are the coefficients of p m  in the low-density series analysed in § 5. 

( a )  The square lattice bond problem (nearest-neighbour spacing a = 1). 

0 1 1 0 0 0 
1 2 0 1 1 2 
2 4 2 4 8 12 
3 8 0 12 36 48 
4 15 5 32 126 158 
5 28 0 78 382 460 
6 50 14 179 1047 1226 
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Table ( a  )-continued 
~~ ~ 

m S t P  1 Su( P )  

7 90 -4 
8 156 42 
9 274 -20 

10 466 126 
11 804 -100 
12 1348 400 
13 2300 -376 
14 3804 1248 
15 6450 -1556 
16 10547 423 1 
17 17784 -5588 
18 28826 13880 
19 48464 -21912 
20 77689 48985 
21 130868 -76404 
22 207308 165712 
23 350014 -295660 
24 548271 602237 
25 931584 - 10 17452 

393 
832 

1717 
345 1 
6828 

13232 
25386 
47877 
89721 

165647 
304748 
553053 

1002426 
1793437 
3211514 
5675637 

10063269 
17595595 
30941598 

2681 
6484 

15069 
33723 
73524 

155970 
324930 
6626 17 

1334065 
2639033 
5173100 
9988505 

19164778 
36273493 
68392722 

127298209 
236546749 
434030369 
796758862 

3074 
7316 

16786 
37174 
80352 

169202 
350316 
7 10494 

1423786 
2804680 
5477848 

10541558 
20 167204 
38066930 
71604236 

132973846 
246610018 
45 1625964 
827700460 

(6) The square lattice site problem ( a  = 1) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1 
2 
4 
7 

12 
20 
33 
53 
85 

133 
210 
322 
505 
759 

1192 
1748 
2782 
3931 
6476 
8579 

15216 
17847 
36761 
33612 
93961 

1 
0 
2 

-1 
6 

-6 
21 

-31 
83 

-147 
346 

1521 
-3127 

6824 
-14364 

31170 

143800 

667802 

3120987 

14632457 

-678 

-66549 

-308723 

- 1441743 

-6749982 

0 
1 
4 

12 
30 
68 

144 
291 
566 

1069 
1970 
3557 
6316 

11040 
19080 
32528 
55086 
92016 

153484 
251825 
415704 
670169 

1100920 

0 
1 
8 

34 
110 
304 
760 

1763 
3878 
8151 

16586 
32689 
63112 

118800 
220888 
401410 
725966 

1281678 
2272152 
3909039 
6842392 

11469139 
19993104 

0 
1 

12 
46 

140 
372 
904 

2054 
4444 
9220 

18556 
36246 
69428 

129840 
239968 
433938 
781052 

1373694 
2425636 
4160864 
7258096 

12 139308 
2 1094024 
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(c) The triangular lattice bond problem ( a  = 2) 
~~ 

m sip1 Sa( P 1 F 2 I  Pi” 

0 1 1 0 0 
1 3 1 6 6 
2 9 3 36 68 
3 25 5 162 442 
4 66 14 618 2218 
5 168 26 2136 9528 
6 417 59 6882 36834 
7 1014 130 21072 131856 
8 2427 269 61968 445000 
9 5737 561 176526 1433294 

10 13412 1290 489750 4444006 
11 31088 2574 1329 186 13349510 
12 71506 5400 3540468 39041224 
13 163378 12252 9278892 111583236 
14 371272 25112 23979348 3 12618368 

0 

104 
604 

2836 
11664 
43716 

152928 
506968 

1609820 
4933756 

14678696 
4258 1692 

120862128 
336597716 

( d )  The triangular lattice site problem (a  = 2) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

I 

3 
7 

15 
31 
62 

122 
235 
448 
842 

1572 
2904 
5341 

1 
1 
1 
3 
5 
6 

14 
25 
32 
70 

116 
176 
337 

0 
6 

36 
138 
432 

1206 
3120 
7644 

17976 
40896 
90660 

196458 
418212 

0 
6 

60 
314 

1240 
4166 

12600 
35324 
93576 

236944 
578764 

1371478 
3169380 

0 
12 
96 

452 
1672 
5372 

15720 
42968 

111552 
277840 
669424 

1567936 
3587592 
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